在工作时,接触器KM1、KM2主触点严禁同时闭合,否则会造成L1、L3两相电源直接短路。为了避免KM1、KM2主触点同时得电闭合,分别给其各自的线圈串接了对方的常闭辅助触点,当一个接触器的线圈得电时会使自己的主触点闭合,还会使自己的常闭触点断开,这样另一个接触器线圈就无法得电。接触器的这种相互制约关系称为接触器的连锁(也称互锁、联锁),实现联锁的常闭辅助触点称为连锁触点。电动机正反转控制线路工作原理分析如下:
1、闭合电源开关QS2、正转过程①正转联锁控制按下正转按钮速SB1→KM1线圈得电→KM1主触点闭合、KM1常开辅助触点闭合、KM1常闭辅助触点断开→KM1主触点闭合将L1、L2、L3三相电源分别供给电动机U、V、W端,电动机正转;KM1常开辅助触点闭合使得SB1松开后KM1线圈继续得电(接触器自锁);KM1常闭辅助触点断开切断KM2线圈的供电,使KM2主触点无法闭合,实现KM1、KM2之间的连锁。②停止控制按下停转按钮SB3→KM1线圈失电→KM1主触点断开、KM1常开辅助触点断开、KM1常闭辅助触点闭合→KM1主触点断开使电动机断电而停转。.5kW以下为宜,且开启式负荷开关(胶盖瓷底隔离开关)一般用于5.5kW及以下的小容量电动机作不频繁的直接起动;封闭式负荷开关(铁壳开关)一般用10kW以下的电动机作不频繁的直接起动。负荷开关均由简易隔离开关闸和熔断器或熔体组成,选择额定功率的6倍开关为宜。
③为了避免电动机起动时的大电流,应当选择额定电流的5倍的熔断器为宜。
④还要选择适当的电源,电源的输出功率应不小于3倍的额定功率。
7、测知无铭牌380V单相焊接变压器的空载电流,求算其额定容量的电工口诀
三百八焊机容量,空载电流乘以五。 说明:单相交流焊接变压器实际上是一种特殊用途的降压变压器,与普通变压器相比,其基本工作原理大致相同。为满足焊接工艺的要求,焊接变压器在短路状态下工作,要求在焊接时具有一定的引弧电压。当焊接电流增大时,输出电压急剧下降。根据P=U×I(功率一定,电压与电流成反比)。当电压降到零时(即二次侧短路),二次侧电流也不致过大等等,即焊接变压器具有陡降的外特性,焊接变压器的陡降外特性是靠电抗线圈产生的压降而获得的。空载时,由于无焊接电流通过,电抗线圈不产生压降,此时空载电压等于二次电压,也就是说焊接变压器空载时与普通变压器空载时相同。变压器的空载电流一般约为额定电流的6%-8%(地区规定空载电流不应大于额定电流的10%)。
8、判断交流电与直流电流的电工口诀电笔判断交直流,交流明亮直流暗,交流氖管通身亮,直流氖管亮一端。 说明:判别交、直流电时,较好在“两电”之间作比较,这样就很明显。测交流电时氖管两端同时发亮,测直流电时氖管里只有一端*发亮。 6、安装空间太小如果很麻烦安装一个阀站,可能涉及挖掘混凝土等工作,不要试图通过使它尽可能减少安装空间,节约那点成本。在后期进行基本的维护将是非常困难的。还要记住一点:工具可能会很长,因此**设置空间预留空间,以便可以松开螺栓。还需要一些空间,它允许您以后添加设备。7、不考虑后期拆卸大多数时候,安装人员明白,你不能在一个混凝土室中将所有东西连接在一起,而不需要某种类型的连接,以便在将来的某个时间去除部件。如果所有的部件都紧紧地拧紧,没有间隙,将它们分开几乎是不可能的。无论是槽型联轴器,法兰接头还是管接头,都是必要的。在将来,有时可能需要移除部件,并且虽然这通常不是安装承包商的担心,但是它应该是所有者和工程师的关注。
8、同心异径管水平安装这可能是吹毛求疵,但是也值得关注。偏心异径管可以水平安装。同心异径管是安装在垂直线。在一些应用中需要安装在水平线,要使用偏心减速器,但这个问题通常涉及到成本:同心异径管便宜。
9、不允许排水的阀门井所有房间都湿了。即使在阀启动期间,当空气从阀盖中排出时,水也会在某一点上落在地板上。任何一个在工业中任何时间已经看到一个水淹的阀门,但真的没有借口(除非,当然,整个地区被淹没,在这种情况下,你有*大的问题)。如果无法安装排水管,则使用简单的排水泵,假设有电源。在没有动力的情况下,具有喷射器的浮阀将有效地保持腔室干燥。10、不排除空气当压力下降时,空气从悬浮液中排出并且被转移到管道中,这将导致阀下游出现问题。一个简单的放气阀将摆脱可能存在的任何空气,并将防止下游的问题。控制阀上游的放气阀也是有效的,因为引导管线中的空气可能导致不稳定性。为什么在它到达阀门之前不去除空气?11、备用分接头这可能是一个小问题,但是在控制阀的上游和下游的室中备用分接头总是有帮助的。此设置为未来维护提供了方便,无论是连接软管,为控制阀添加遥感还是为SCADA添加压力变送器。对于在设计阶段添加配件的小成本,它显着地增加了在将来的可用性。使得维护任务*加困难,因为一切都被油漆覆盖,因此无法读取铭牌或进行调整。
总体来说,随着自控技术的*发展,*智能、***、*可靠、*稳定的自动化产品被开发和应用,做好现场仪表选型,避免陷入误区,是我们仪表工作的重要内容之一。本文对压力容器设计中应考虑的脆性断裂、韧性断裂、*量变形引起的接头泄漏和弹性或弹塑性失稳(屈曲)四种失效模式做介绍,并提供了不同压力容器失效模式的应对方法供大家参考。
由中石化宁波工程公司主编的HG/T《钢制化工容器设计基础规范》2021年应该就能取代现行的2011版而正式实施。新HG/T附录A给出了压力容器常见的失效模式,按照A.0.3条内容,本文对压力容器设计中应考虑的四种基本失效模式做介绍。
压力容器常见的四种失效模式1、脆性断裂压力容器脆性断裂失效模式是指元件在一次加载条件下无明显塑性变形而发生的断裂。容器在使用过程中发生脆性断裂的主要原因在于材料的脆化、材料本身的缺陷及应力影响。
西门子编程电缆 6GK1571-0BA00-0AA0